4 tahun lalu Real Time2menit Sederhanakan bentuk pangkat berikut 1. a² x a⁵ x a⁶ Pembahasana² x a⁵ x a⁶ = a²⁺⁵⁺⁶= a¹³ 2. 3³ p⁵ q¹3³ p² Pembahasan 3³ p⁵ q¹3³ p² = 3³⁺³ p⁵⁺² q = 3⁶ p⁷ q 3. 4² 4⁴ Pembahasan4² 4⁴ = 4²⁺⁴=4⁶ 4. ½ q² x 6q³ x 4q² Pembahasan ½ q² x 6q³ x 4q² = 1/2 x 6 x 4 q²⁺³⁺² =12q⁷ Sederhanakan bentuk pangkat berikut 1. x⁴ x² Pembahasanx⁴ x² = x⁴⁻² = x 2. y⁶ y⁴ Pembahasany⁶ y⁴ = y⁶⁻⁴ = y² 3. x⁷ y⁵ x² y² Pembahasanx⁷ y⁵ x² y² =x⁷⁻² y⁵⁻² =x⁵ y³ 4. a⁵ b⁵ a² b³ Pembahasana⁵ b⁵ a² b³ =a⁵⁻² b⁵⁻³ =a³ b² 5. a⁵ b⁴ c³ a⁴ b² c Pembahasan a⁵ b⁴ c³ a⁴ b² c =a⁵⁻⁴ b⁴⁻² c³⁻¹ = a b² c² 6. 25 x⁴ y⁸ 5x y⁷ Pembahasan 25 x⁴ y⁸ 5x y⁷ = 255 x⁴⁻¹ y⁸⁻⁷ = 5 x³ y Nyatakan bilangan-bilangan berpangkat negatif di bawah ini dalam pangkat positif. 1. a⁻⁴ Pembahasana⁻⁴ = 1/a⁴ 2. x⁻⁸ Pembahasanx⁻⁸ = 1/x⁸ 3. a⁻² b⁻¹ Pembahasana⁻² b⁻¹ = 1/a² b 4. x⁻² y⁻⁶ Pembahasanx⁻² y⁻⁶ = 1/x² y⁶ 5. a⁻³ a⁻¹ Pembahasana⁻³ a⁻¹ = a⁻³ / a⁻¹ = 1/ a³ / 1/a = 1/a³ x a = a / a³ = a¹⁻³ = a⁻² = 1/a² Cara singkata⁻³ a⁻¹ = a⁻³⁻⁽⁻¹⁾ = a⁻² = 1/a² 6. a⁻² b⁻⁴ a⁻¹ b⁻² Pembahasan a⁻² b⁻⁴ a⁻¹ b⁻² = a⁻²⁻⁽⁻¹⁾ b⁻⁴⁻⁽⁻²⁾ = a⁻¹ b⁻² = 1/a 1/b² = 1/ab² 7. x⁻² y⁻¹ 6 x⁻¹ y⁻² Pembahasan x⁻² y⁻¹ 6 x⁻¹ y⁻² = 1/6 x⁻²⁻⁽⁻¹⁾ y⁻¹⁻⁽⁻²⁾ = 1/6 x⁻¹ y¹ = y/6x 8. x⁻² x⁻⁴ x⁻¹ Pembahasanx⁻² x⁻⁴ x⁻¹ = x⁻²⁺⁽⁻⁴⁾⁺⁽⁻¹⁾ = x⁻⁷ = 1/x⁷ Sederhanakan bentuk pangkat berikut, kemudian nyatakan dalam pangkat positif 1. 2⁻⁹ 2⁴ 2⁻⁷ 2⁻⁴ Pembahasan 2⁻⁹ 2⁴ 2⁻⁷ 2⁻⁴ = 2⁻⁹⁺⁴ 2⁻⁷⁺⁽⁻⁴⁾ = 2⁻⁵ 2⁻¹¹ = 2⁻⁵⁻⁽⁻¹¹⁾ =2⁶ 2. 8⁻⁹ 8⁻⁸ 8⁻⁷ 8⁻³ Pembahasan 8⁻⁹ 8⁻⁸ 8⁻⁷ 8⁻³ = 8⁻⁹⁺⁽⁻⁸⁾ 8⁻⁷⁺⁽⁻³⁾ = 8⁻¹⁷ 8⁻¹⁰ = 8⁻¹⁷⁻⁽⁻¹⁰⁾ = 8⁻¹⁷⁺¹⁰ =8⁻⁷ =1/8⁷ 3. x⁴/y² x/y³⁻¹ Pembahasan x⁴/y² x/y³⁻¹ =x⁴/y² x⁻¹/y⁻³ =x⁴/y² x⁻¹ y³ = x⁴ y⁻² x⁻¹ y³ = x⁴⁻⁽⁻¹⁾ y⁻²⁻³ = x⁵ y⁻⁵ =x⁵/y⁵ Jika x=3 dan y=2. Tentukan nilai dari bentuk pangkat berikut. x⁴/y² x/y³⁻¹ Pembahasan Soal ini kita bisa mengerjakannya dengan menyatakan terlebih dahulu kedalam pangkat positif seperti soal sebelumnya lalu mengganti nilai x dan y yang telah diketahui.x⁴/y² x/y³⁻¹ = x⁴/y² x⁻¹ y⁻³ = x⁴⁻⁽⁻¹⁾ y²⁻⁽⁻³⁾ = x⁴⁺¹ y²⁺³ = x⁵ y⁵ =3⁵ 2⁵ = 3x3x3x3x3 2x2x2x2x2 =243 32 Jika a=2 dan b=5. Tentukan nilai dari 18a⁴b³/4a²b²2³a⁵b⁷/2² a²b³ Pembahasan Untuk mengerjakan soal ini pun akan lebih mudah apabila kita menyederhanakan terlebih dahulu, sebagai berikut18a⁴b³/4a²b²2³a⁵b⁷/2² a²b³ =9/2 a⁴⁻²b³⁻²2³⁻²a⁵⁻²b⁷⁻³ =9/2 a² b2 a³b⁴ =9 a²⁺³b¹⁺⁴ =9a⁵b⁵ =9 2⁵5⁵ =9323125 =900000 Demikian contoh soal dan pembahasan tentang bilangan berpangkat positif dan negatif tingkat SMA. Semoga Bermanfaat. sheetmath
Teksvideo. jika kalian menemukan soal seperti ini maka konsep penyelesaiannya adalah merasionalkan bentuk akar Di mana kalian ubah dulu soalnya menjadi 1 per x pangkat min 1 adalah 1 per X Karena 1 per a pangkat m akan menjadi a pangkat min 6 m sehingga jika x pangkat min 1 akan menjadi 1 per x pangkat 1 min 1 x ditambah 6 dikurang dengan 1 per y dibagi dengan x pangkat setengah itu adalah
Variabeldalam sistem persamaan ini berjumlah tiga berpangkat satu. Bentuk umumnya sebagai berikut: ax + by + cz = d. a, b, dan c adalah bilangan bulat bukan nol dengan d adalah konstanta.
rOUF8.